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Abstract

A reproducing kernel particle method (RKPM) is presented to analyze the natural frequencies of Euler–
Bernoulli beams as well as Kirchhoff plates. In addition, RKPM is also used to predict the forced vibration
responses of buried pipelines due to longitudinal travelling waves. Two different approaches, Lagrange
multipliers as well as transformation method , are employed to enforce essential boundary conditions.
Based on the reproducing kernel approximation, the domain of interest is discretized by a set of particles
without the employment of a structured mesh, which constitutes an advantage over the finite element
method. Meanwhile, RKPM also exhibits advantages over the classical Rayleigh–Ritz method and its
counterparts. Numerical results presented here demonstrate the effectiveness of this novel approach for
both free and forced vibration analysis.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

For distributed parameter systems, the dynamic models for free and forced vibration are
governed by a group of partial differential equations as well as a set of boundary conditions.
Close-form solutions to these problems are possible only in relatively few cases, recourse,
therefore, must be had to numerical approaches. For this reason, numerical techniques with
different discretization schemes for distributed parameter systems (beams, plates, shells, etc.) have
been developed, such as the Rayleigh–Ritz method, the weighted residuals method, the finite
element method (FEM), etc. Rayleigh–Ritz method and its counterparts are restricted to domain
with simple geometry and to simple loading conditions, while in the FEM mesh is required and
the preparation of data is arduous and time-consuming.
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In recent years, a new type of numerical method called meshless or mesh-free method has been
developed in the realm of computational mechanics. Among various versions of meshless
methods, the element free galerkin (EFG) method and the reproducing kernel particle method
(RKPM) are two well-developed techniques [1]. For RKPM, which shares the common features
of all meshless methods, there is no need for explicit mesh, so mesh creation time is saved.
Furthermore, there are some unique features of RKPM, such as time or space localization, hp-like
adaptivity as well as multiresolution analysis. All these make RKPM a novel approach for
structural dynamics, large deformation problems, computational fluid mechanics and other
application areas [2–8].
Liu et al. [3] proposed RKPM for structural dynamics analysis for the first time. Dynamic large

deformation analyses of 1-D and 2-D non-linear structures are performed using RKPM.
Numerical results show that RKPM provides better stability than smooth particle hydrodynamics
(SPH) method and allows larger time steps than the critical time step for standard FEM. Aluru [9]
used RKPM to analyze static and dynamic deformation of microelectromechanical systems
(MEMS). RKPM is shown to be accurate by comparing the computed peak deflections with
experimental data.
Ouatouati [10] used EFG method to calculate natural frequencies and modes of beams and

plates for the first time. Liu [11] also used EFG method to investigate static and free vibration
analyses of plates with complicated shape. Both of them adopt moving least-squares (MLS)
interpolation to construct shape functions. The reproducing kernel (RK) approximation is,
alternatively, used herein to form shape functions. The resulting RKPM method is proposed to
calculate natural frequencies of beams and plates with various boundary conditions such as free,
simply supported and fully clamped. Furthermore, longitudinal seismic responses of buried
pipelines subjected to travelling sinusoidal wave are investigated.

2. Overview of RKPM

2.1. Reproducing kernel approximation

The kernel approximation of a function uðxÞ is written as

uaðxÞ ¼
Z
O

wdðx � sÞuðsÞ ds; ð1Þ

where wdðx � sÞ is the kernel function with a dilation parameter, d; and uaðxÞ is the kernel
approximation of uðxÞ: Liu et al. [2,3] proposed the RK approximation by introducing a
correction function to the kernel approximation, which gives

uaðxÞ ¼
Z
O

%wdðx � sÞuðsÞ ds; ð2Þ

where %wdðx � sÞ ¼ Cðx; sÞwdðx � sÞ is the corrected reproducing kernel function. Cðx; sÞ is the
correction function and is expressed as a linear combination of polynomial basis functions

Cðx; sÞ ¼ c0ðxÞ þ c1ðxÞðx � sÞ þ c2ðx � sÞ2 þ?þ cNðxÞðx � sÞN ; ð3Þ
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where c0ðxÞ; c1ðxÞ; c2ðxÞ;y; cNðxÞ are functions of x which are to be determined by the
reproducing conditions. N is the highest derivatives of the governing differential equations.
Defining the moments of kernel function and corrected kernel function, respectively, in the

following form:

mkðxÞ ¼
Z
O
ðx � sÞkwdðx � sÞ ds; k ¼ 0; 1; 2;y; ð4Þ

%mkðxÞ ¼
Z
O
ðx � sÞk %wdðx � sÞ ds; k ¼ 0; 1; 2;y; ð5Þ

the reproducing conditions for uaðxÞ ¼ uðxÞ can be obtained from Eq. (4) and the Taylor series
expansion of uðsÞ; and can be expressed as the following vector form:

%M ¼ f %m0ðxÞ; %m1ðxÞ;y; %mNðxÞg
T ¼ f1; 0;y; 0gT: ð6Þ

Designating %C ¼ fc0ðxÞ; c1ðxÞ;y; cNðxÞg
T the unknown vector consisting of N þ 1 correction

function coefficients, the unknown vector can be determined through solving the following
equations:

M %C ¼ %M; ð7Þ

where

M ¼

m0ðxÞ m1ðxÞ ? mNðxÞ

m1ðxÞ m2ðxÞ ? mNþ1ðxÞ

? ? ?

mNðxÞ mNþ1ðxÞ ? m2NðxÞ

2
6664

3
7775: ð8Þ

2.2. Reproducing conditions for the first derivative

Reproducing conditions for the first derivative of an approximated function can be derived in a
similar fashion as described above. The reproducing conditions for duaðxÞ=dx ¼ duðxÞ=dx can be
written in a similar form as Eq. (6)

%M0 ¼ f %m0
0ðxÞ; %m

0
1ðxÞ;y; %m0

NðxÞg
T ¼ f0;�1; 0y; 0gT ð9Þ

in which

%m0
kðxÞ ¼

Z
O
ðx � sÞk

d

ds
½ %wdðx � sÞ
 ds; k ¼ 0; 1; 2;y : ð10Þ

Denoting %C0 ¼ fc00ðxÞ; c
0
1ðxÞ;y; c0NðxÞg

T the column vector comprising the gradients of the
correction function coefficients, the vector can, combining Eq. (7) together, be obtained from the
following equations:

½M0 M

%C

%C0

" #
¼ ½0
; ð11Þ
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where M is as defined in Eq. (8), and M0 is defined as

M0 ¼

m0
0ðxÞ m0

1ðxÞ ? m0
NðxÞ

m0
1ðxÞ m0

2ðxÞ ? m0
Nþ1ðxÞ

? ? ?

m0
NðxÞ m0

Nþ1ðxÞ ? m0
2NðxÞ

2
6664

3
7775:

2.3. RKPM

The discretized form of reproducing kernel approximation, which is referred to as the RKPM,
can be obtained by applying the trapezoidal ruler to Eq. (2) and approximating the unknown
variable in the following form of RKPM shape functions:

uaðxÞ ¼
XNP

I¼1

NI ðxÞuI ; ð12Þ

where NI ðxÞ ¼ Cðx; xI Þwdðx � xI ÞDVI is defined as the RKPM shape function for particle I , uI is
the parameter associated with particle I , DVI is the influence domain of particle I , and NP is the
total particle number to discretize the problem domain. For multi-dimensional problems, Eq. (12)
can be written in the form of position vector x as follows:

uaðxÞ ¼
XNP

I¼1

NI ðxÞuI : ð13Þ

3. RKPM for free vibration analysis of beams and plates

3.1. Free vibration analysis of Euler–Bernoulli beam using RKPM

The governing equation of free vibration of Euler–Bernoulli is posed as

@2u

@t2
þ

EI

rA

@4u

@x4
¼ 0; ð14Þ

where u is the displacement, and E and r are, respectively, the Young’s modulus and mass
density of the material, and I and A are, respectively, the moment of inertia and area of cross-
sections.
Without loss of generality, the clamped–simply supported beam is chosen as an example for the

purpose of illustration. Applying virtual work principle and using Lagrange multipliers to impose
the corresponding boundary conditions lead to the following statement:

d %P ¼
Z

x

@2u

@x2
@2du

@x2
dx þ

rA

EI

Z
x

@2u

@t2
du dx þ l1dujl0 þ dl1ujl0 þ l2d

@u

@x

����
0

þdl2
@u

@x

����
0

¼ 0; ð15Þ

where l is the total length of beam, l1 and l2 are two Lagrange multipliers, respectively.
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In order to identify the meanings of Lagrange multipliers l1 and l2; Eq. (15) can be
manipulated as follows:

d %P ¼
Z

x

@4u

@x4
du dx þ

rA

EI

Z
x

@2u

@t2
du dx

þ
@2u

@x2
d
@u

@x

����
l

þ l2 �
@2u

@x2

� 
d
@u

@x

����
0

þ l1 �
@3u

@x3

� 
dujl0 þ dl1ujl0 þ dl2

@u

@x

����
0

¼ 0: ð16Þ

The identification of l1 and l2 is, therefore, readily obtained as follows:

l1 ¼
@3u

@x3
; l2 ¼

@2u

@x2
: ð17Þ

Substituting l1 and l2 given above into Eq. (15) givesZ
x

@2u

@x2
@2du

@x2
dx þ

rA

EI

Z
x

@2u

@t2
du dx þ

@3u

@x3
du

����l
0

þ d
@3u

@x3
u

����l
0

þ
@2u

@x2
d
@u

@x

����
0

þ d
@2u

@x2
@u

@x

����
0

¼ 0: ð18Þ

Eq. (18) is the derived weak form to the strong form given in Eq. (14) with corresponding
clamped–simply supported boundary conditions. Following the same procedure, the weak forms
corresponding to other boundary conditions can be summarized as follows:

(a) Simply supported–simply supported:Z
x

@2u

@x2
@2du

@x2
dx þ

rA

EI

Z
x

@2u

@t2
du dx þ

@3u

@x3
du

����l
0

þ d
@3u

@x3
u

����l
0

¼ 0: ð19Þ

(b) Clamped–free:Z
x

@2u

@x2
@2du

@x2
dx þ

rA

EI

Z
x

@2u

@t2
du dx �

@3u

@x3
du

����
0

�d
@3u

@x3
u

����
0

þ
@2u

@x2
d
@u

@x

����
0

þ d
@2u

@x2
@u

@x

����
0

¼ 0: ð20Þ

(c) Clamped–clamped:Z
x

@2u

@x2
@2du

@x2
dx þ

rA

EI

Z
x

@2u

@t2
du dx þ

@3u

@x3
du

����l
0

þ d
@3u

@x3
u

����l
0

�
@2u

@x2
d
@u

@x

����l
0

�d
@2u

@x2
@u

@x

����l
0

¼ 0: ð21Þ

With the weak forms given in Eq. (19)–(21) at hand, RKPM discretization procedure can now be
used to obtain the discretized equations. As an example, only Eq. (21) corresponding to clamped–
clamped boundary conditions is discretized by RKPM and the resulting stiffness and mass
matrices are given herein, and other equations can be treated in a similar manner.
Expressing u and du in the form of Eq. (12), i.e.,

u ¼
XNP

B¼1

NBuB ¼ Nu; ð22Þ

du ¼
XNP

A¼1

NAvA ¼ Nv ð23Þ
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and substituting Eqs. (22) and (23) into Eq. (21), the resulting stiffness and mass matrices can be
written in the following expressions:

M ¼
Z

x

rA

EI
NtN dx; ð24Þ

K ¼
Z

x

@2N

@x2
@2Nt

@x2
dx þ

@3N

@x3
Nt
����l
0

þN
@3Nt

@x3

����l
0

�
@2N

@x2
@Nt

@x

����l
0

�
@N

@x

@2Nt

@x2

����l
0

: ð25Þ

3.2. Free vibration analysis of Kirchhoff plate using RKPM

Following the similar procedures for deriving weak forms of free vibration beams, the weak
form of Kirchhoff plate is derived as follows:

r
Z

h .wdw þ
h3

12
w;x dw;x þ

h3

12
w;y dw;y

� 
dx dy þ D

Z
ðw;xx dw;xx þ w;yy dw;yy Þ dx dy

þ vD

Z
ðw;xx dw;yy þ w;yy dw;xx Þ dx dy þ 2Dð1� vÞ

Z
w;xy dw;xy dx dy ¼ 0; ð26Þ

where w denotes displacement of plate, and v; h and D represent the Poisson ratio, the thickness of
plate, the flexural stiffness of the plate, respectively.
Approximating w and dw in the form given by Eq. (12) and substituting them into Eq. (26) yield

the mass and stiffness matrices in the following form:

M ¼ r
Z

hNtðx; yÞNðx; yÞ þ
h3

12

@Ntðx; yÞ
@x

@Nðx; yÞ
@x

þ
h3

12

@Ntðx; yÞ
@y

@Nðx; yÞ
@y

� �
dx dy; ð27Þ

K ¼
Z

@2

@x2

@2

@y2

2
@2

@x@y

2
66666664

3
77777775
Ntðx; yÞ

0
BBBBBBB@

1
CCCCCCCA

t

D

1 v 0

v 1 0

0 0
1� v

2

2
6664

3
7775

@2

@x2

@2

@y2

2
@2

@x@y

2
66666664

3
77777775
Ntðx; yÞ

0
BBBBBBB@

1
CCCCCCCA
dx dy: ð28Þ

3.3. Boundary conditions treatment by transformation method

Due to lack of Kronecker delta property in the RKPM shape functions, the essential boundary
conditions need to be treated with additional efforts. The boundary conditions of Euler–Bernoulli
beams are treated through a Lagrange multipliers technique. We will now use alternative the so-
called transformation method to deal with the essential boundary conditions encountered in
Kirchhoff plate problems. The transformation method is presented and used by Chen [5] and
Aluru et al. [9].
Using the transformation method, the transformation matrix is formed by establishing the

relationship between the nodal value uðxI Þ ¼ #dI and the nodal parameter uI : Without loss of
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generality, assuming that there are m constrained particles, the transformation matrix gives

#d1

^
#dm

#dmþ1

^
#dNP

2
66666666664

3
77777777775
¼

N1ðx1Þ ? Nmðx1Þ Nmþ1ðx1Þ ? NNPðx1Þ

^ ^ ^ ^ ^ ^

N1ðxmÞ ? NmðxmÞ Nmþ1ðxmÞ ? NNPðxmÞ

N1ðxmþ1Þ ? Nmðxmþ1Þ Nmþ1ðxmþ1Þ ? NNPðxmþ1Þ

^ ^ ^ ^ ^ ^

N1ðxNPÞ ? NmðxNPÞ Nmþ1ðxNPÞ ? NNPðxNPÞ

2
6666666666666666666664

3
7777777777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T

u1

^

um

umþ1

^

uNP

2
6666666664

3
7777777775
;

ð29Þ

where T is the co-ordinate transformation matrix. The shape functions can also be transformed by

#NI ðxÞ ¼
XNP

J¼1

T�1
JI NJ ðxÞ ð30Þ

and

uaðxÞ ¼
XNP

I¼1

NI ðxÞuI ¼
XNP

I¼1

#NI ðxÞ #dI : ð31Þ

Note that the transformed shape functions now bear the Kronecker delta property, i.e.,
#NI ðxJÞ ¼ dIJ ; and the essential boundary conditions can be treated in the same manner as
standard FEM followed.

3.4. RKPM results of free vibration of beams and plates

For the convenience of comparison, a dimensionless so-called natural frequency parameter,
O ¼ b2l2 ¼ ol2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
for beam or O ¼ b2a2 ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for square plate (a is the length of

plate), is introduced. It is more instructive to use this dimensionless parameter or its square root to
compare results of different methods. Here b is the eigenvalue of the corresponding boundary
value problem if separation of variables is used in analytical solution.
For the purpose of illustration, a group of beam parameters rA=EI ¼ 1 and l ¼ 1 are chosen

and total particle number NP ¼ 21 are selected for calculation. Natural frequency parameters up
to ninth order are investigated by present RKPM method, and part of the results are presented in
Table 1. Both RKPM numerical results and analytical results are given and compared. Presented
comparison indicates that the RKPM results are in good agreement with the analytical results for
both low and high order modes results. It is also shown that, for RKPM method, the results are
fairly good even for small number of particles.
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Now consider a thin square plate with the following parameters: length a ¼ b ¼ 1:0 m;
thickness h ¼ 0:05 m; Young’s modulus E ¼ 200� 109 N=m2: the Poission ratio v ¼ 0:3; and
mass density r ¼ 8000 kg=m3: Three different numbers of particles, i.e., 5� 5; 9� 9; 13� 13 are
used to calculate the square roots of natural frequency parameters of plate with all four sides free.
The distribution of particles in the plate is shown in Figs. 1(a)–(c), respectively. In order to verify
the correctness and effectiveness of RKPM, another popular meshless method, EFG method and
the classic FEM are applied to solve the same problem. The results of these three numerical
methodologies as well as the analytical results are presented in Table 2. For the FEM results,
HOE denotes eight-noded semi-loof thin shell element (4� 4 mesh); LOE denotes four-noded iso-
parametric shell element (8� 8 mesh) [11]. It is observed that, with regard to the square roots of
dimensionless natural frequency parameters, the results obtained using RKPM are somewhere
between those of FEM using HOE and LOE. Meanwhile, for majority of modes, RKPM provides
improved accuracy and convergence as particles increased.
For the plate with all four sides simply supported, 13� 13 particles are scattered in the domain

to calculate the dimensionless natural frequency parameters. The RKPM results are also
compared with the results obtained using Rayleigh–Ritz method and are given in Table 3.
From Table 3, the following conclusion can be reached: there is fairly good agreement between
the RKPM results and the analytical results not only for lower order modes but also for higher
order modes; while for Rayleigh–Ritz method, only the results obtained for lower modes are
reasonable.
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Fig. 1. Domain discretization of a square plate ((a) 5� 5 nodes, (b) 9� 9 nodes, and (c) 13� 13 nodes).

Table 1

The dimensionless natural frequency parameters

Mode Clamped–clamped beam Simply supported–clamped beam

Analytical result RKPM result Analytical result RKPM result

1 22.373 21.316 15.421 15.573

2 61.670 56.731 49.965 50.982

3 120.91 118.510 104.25 102.911

7 555.16 555.651 518.77 497.174

8 713.08 717.664 671.75 675.081

9 890.74 935.929 844.47 817.915
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4. RKPM for forced vibration analysis of buried pipelines subjected to longitudinal travelling waves

4.1. Governing equations

Letting uðx; tÞ denote the absolute displacement as a function of the co-ordinate along the axis
of the pipeline and ugðx; tÞ denote the ground excitation, derivation of the vibration equation of
the pipe subjected to longitudinal travelling waves gives (see Ref. [12] for details)

%m
@2uðx; tÞ

@t2
þ %c

@uðx; tÞ
@t

þ %kuðx; tÞ � EF
@2uðx; tÞ
@x2

¼ %kugðx; tÞ þ %c
@ugðx; tÞ

@t
ð32Þ

with boundary conditions

@uðx; tÞ
@x

����
x¼0

¼
@uðx; tÞ
@x

����
x¼l

¼ 0 ð33Þ
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Table 2

The square roots of the dimensionless natural frequency parameters

Mode Analytical RKPM EFG RKPM EFG RKPM EFG FEM [11]

5� 5 5� 5 9� 9 9� 9 13� 13 13� 13 HOE LOE

4 3.670 3.688 3.691 3.672 3.672 3.671 3.671 3.567 3.682

5 4.427 4.431 4.433 4.433 4.434 4.430 4.430 4.423 4.466

6 4.926 4.936 4.938 4.937 4.94 4.931 4.932 4.875 4.997

7 5.929 5.942 5.934 5.908 5.911 5.904 5.904 5.851 5.942

8 5.929 5.942 5.934 5.908 5.911 5.904 5.904 5.851 5.942

9 7.848 8.081 8.046 7.846 7.843 7.834 7.836 7.82 8.079

Table 3

The dimensionless natural frequency parameters

Mode Rayleigh–Ritz Analytical RKPM

1 19.739 19.739 19.744

2 49.348 49.348 49.363

3 49.348 49.348 49.363

4 78.957 78.957 79.004

5 98.711 98.696 98.583

6 98.711 98.696 98.592

14 246.909 246.740 247.170

15 247.243 246.740 247.170

16 259.886 256.609 256.168

17 276.422 256.609 256.345

22 353.406 335.566 336.560

23 371.120 365.175 366.488

24 400.466 365.175 366.488

25 407.309 394.784 397.346
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and initial conditions

uðx; tÞjt¼0 ¼
@uðx; tÞ

@t

����
t¼0

¼ 0; ð34Þ

where %m is the mass per unit length of the pipe, %c and %k the damping and stiffness per unit length
of the soil–structure interaction, E and F the modulus of elasticity and cross-sectional area of the
pipe, l; the total length of pipeline accounted for, respectively.

4.2. RKPM formulation

Letting v ¼ du be any admissible variation of u; and also introducing Lagrange multipliers to
incorporate boundary conditions, the weak form to the strong form given by Eq. (32) with
associated boundary conditions Eq. (33) is given as follows:

%m

EF

Z
x

vu;tt dx þ
%c

EF

Z
x

vu;t dx þ
%k

EF

Z
x

vu dx þ
Z

x

v;xu;x dx �
Z

x

v
Pðx; tÞ

EF
dx � 2vu;x

����l
0

¼ 0;

ð35Þ

where

Pðx; tÞ ¼ %kugðx; tÞ þ %c
@ugðx; tÞ

@t
:

Denoting u ¼ fu1; u2;y; uNPg
T the column vector consisting of nodal displacements, the discrete

non-linear equations are obtained as follows:

Mu;tt þDu;t þ RstatðuÞ ¼ 0 ð36Þ

where u;t and u;tt are the first and second derivatives of vector u with respect to time t; respectively.
M is the mass matrix with its Ath row and Bth column element defined as

MAB ¼
Z

x

NA
%m

EF

� 
NB dx: ð37Þ

and D is the damping matrix with its entries given by

DAB ¼
Z

x

NA
%c

EF

� 
NB dx: ð38Þ

RstatðuÞ is the static residual and its Ath row element has the form

RStat
A ðuÞ ¼

%k

EF

Z
x

NA

XNP

B¼1

NBuB dx þ
Z

x

NA;x

XNP

B¼1

NB;xuB dx

�
Z

x

NA
Pðx; tÞ

EF
dx � 2 NA

XNP

B¼1

NB;xuB

 !�����
l

0

: ð39Þ

For pseudo-static analysis, only RstatðuÞ remains in Eq. (36) and it becomes

RstatðuÞ ¼ 0: ð40Þ
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For dynamic analysis, the displacement at time tnþ1 can be computed by solving the following
system of equations:

M
unþ1 � 2un þ un�1

Dt2

� 
þD

unþ1 � un

Dt

�  
þ Rstatðunþ1Þ ¼ 0; ð41Þ

where unþ1; un and un�1 are the displacements at times tnþ1; tn and tn�1; respectively, and Dt is the
time step. Eq. (41) can be solved by Newton method, and the ith displacement increment denoted
by duðiÞnþ1 in a Newton approach to compute the displacement unþ1 is given as follows:

M

Dt2
þ
D

Dt
þ JðuðiÞnþ1Þ

� �
dui

nþ1 ¼ � M
unþ1 � 2un þ un�1

Dt2

� 
þD

unþ1 � un

Dt

�  
þ Rstatðunþ1Þ

� �
; ð42Þ

where the Jacobian matrix J is defined as

JðuðiÞnþ1Þ ¼
@Rstatðunþ1Þ

@unþ1
ð43Þ

with its Ath row and Bth column element given by

JABðuÞ ¼
%k

EF

Z
x

NANB dx þ
Z

x

NA;xNB;x dx � 2NANB;xj
l
0: ð44Þ

4.3. RKPM results

Assuming a longitudinal wave travels from left end to the right end of pipe with wave
propagation speed c , the acceleration of ground can be given as

@2ugðx; tÞ
@t2

¼
.u0 sin %w t �

x

c

�  
;

x

c
ptp

2p
%w
þ

x

c
;

0 otherwise:

8<
: ð45Þ

The corresponding ground displacement is in the form

ugðx; tÞ ¼
.u0

%w
t �

x

c

�  
�

.u0

%w2
sin %w t �

x

c

�  
;

x

c
ptp

2p
%w
þ

x

c
;

0 otherwise:

8<
: ð46Þ

In order to compare with the series analytical results given in Ref. [12], the same parameters
are used herein, i.e., .u0 ¼ 0:3 m=s2; %w ¼ 12:56 rad=s; l ¼ 200 m; %k ¼ 95:2 MPa; %m ¼ 2072 kg=m;
E ¼ 2� 105 MPa; F ¼ 9:75� 10�2 m2; %c ¼ 1� 105 kg=ðs:mÞ:
Figs. 2and 3 show the pseudo-static longitudinal displacements of the points located 40 and

100 m away from the left end of pipeline, respectively. The results correspond to a case of ground
wave travelling at speed of 150 m=s; and are obtained by RKPM and the series analytical method
proposed in Ref. [12]. For RKPM, total 51 particles are used to compute the longitudinal
displacements. It is observed that the static analysis results of RKPM exactly equal the analytical
results. Furthermore, dynamic responses of the same points corresponding to wave propagation
speed c ¼ 1500 m=s are also computed by RKPM and compared with the analytical results, and
the results are given in Figs. 4 and 5. From Figs. 2–5, we conclude that RKPM is quite suitable for
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Fig. 3. Static displacement of pipe x ¼ 100 m:

Fig. 4. Dynamic displacement of pipe x ¼ 40 m:

Fig. 2. Static displacement of pipe x ¼ 40 m:
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both static and dynamic seismic analysis of buried pipelines. RKPM can, as shown herein, given
seismic response of buried pipelines with great accuracy.
In order to test the convergence and effectiveness of RKPM, a comparison is made between the

RKPM results and the mesh-based FEM. Only the static displacements of pipeline are computed
by both methods with the same number of nodes, i.e., NP ¼ 21: The point for calculation is 40 m
away from the left end of pipe, and the wave propagates at speed of 1500 m=s: The comparison is
given in Table 4. The comparison indicates that RKPM provides a higher rate of convergence
than the FEM.

5. Concluding remarks

A meshless approach is presented to accomplish modal analysis of beams and plates as
well as to obtain forced vibration response of buried pipelines subjected to longitudinal travelling
waves. The meshless approach is based on consistent reproducing kernel approximations,
and the domain is discretized by a set of particles without employment of explicit meshes. This
paper presents, through introduction of Lagrange multipliers, proper treatment of different
boundary conditions and derivation of weak forms of beam free vibration and pipeline forced
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Table 4

Comparison between RKPM results and FEM results (unit of displacement: m)

Time (s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Analytical 0 1.307E-05 2.492E-04 1.054E-03 2.575E-03 4.688E-03 7.043E-03 9.196E-03 1.078E-02

RKPM 0 1.271E-05 2.481E-04 1.052E-03 2.577E-03 4.697E-03 7.059E-03 9.216E-03 1.080E-02

FEM 0 1.182E-05 2.383E-04 1.018E-04 2.498E-03 4.558E-03 6.858E-03 8.964E-03 1.052E-02

Fig. 5. Dynamic displacement of pipe x ¼ 100 m:
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vibration. Moreover, alternative transformation method is employed to enforce essential
boundary conditions for 2-D plate problems, and RKPM formulation of Kirchhoff plate free
vibration problem is also given herein. The numerical results obtained using RKPM method are
compared with the results obtained by analytical method or other standard numerical methods
such as FEM or Rayleigh–Ritz method. The result of comparison is encouraging regarding free
vibration results and force vibration results. Without restriction on simple regular shapes and
simple loading conditions, this novel approach has a broader range of application than the
analytical method and the Rayleigh–Ritz method. This novel approach, due to no need for
explicit mesh and ease for data preparation, also constitutes advantages over the mesh-based
FEM method.
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